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Divine proportion shape preservation and the fractal nature of cluster-cluster aggregates
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We present a restricted hierarchial model of cluster-cluster aggregation which allows for an analytical
calculation of the fractal dimensions in excellent agreement with those found in Nature and simulations. We
argue that this agreement is a consequence of the self-preserving cluster shape common to all models and
Nature. This shape determines the fractal dimension and in our model is descrildedirhgnsional gener-
alizations of the Fibonacci series and the divine proporti8i.063-651X98)03212-1

PACS numbes): 61.43.Hv

INTRODUCTION longest edge of this rectangle is the side, the shortest is the
end.(2) No part of the circumscribing rectangle of a cluster
When finely divided solid matter aggregates, it formscolliding with the side of the circumscribing rectangle of the
ramified clusters of apparently random and ill defined shapsecond cluster can extend beyond the limits of that g@le.
[1—4]. Our ability to describe the morphology of such aggre-The circumscribing rectangles cannot interpenetrate. This
gates quantitatively improved significantly some two de-model yields a monodisperse system of clusters.
cades ago with the introduction by Mandlebi&] of the We apply this restricted, side-to-end, hierarchical aggre-
fractal concept to physics, and the demonstration by Forregiation scheme to the case of circular monomers on a two-
and Witten[6] that these aggregates have a fractal morpholdimensional, square lattice in Fig. 1. The dimensions of the
ogy. Subsequently, there has been a resurgence of interestdiicumscribing rectangles progress with aggregation in ac-
the morphology of aggregates, the kinetics of their growthcord with the Fibonacci series
and the structures that form during nonequilibrium growth in
general 7-9]. f,=1,1,2,3,5,8,13,21,34,55,... . 1)
Fractals are scale invariant, self-similar objects with a
quantifiable, noninteger fractal dimensidh less than the The side-to-end aspect rat® of the aggregates is equal to
spatial dimensionl. The common fractal aggregates that oc-f,;1/f,. In the limitn—oo, this yields the divine proportion
cur in colloids[10] and aerosol§11-13 are successfully (or golden section¢ [17,18
simulated on a computer using cluster-cluster aggregation
models[14-1§. Despite this, fundamental questions remain R=Ilim f, ,/f,=¢$=1.61803.... 2
with regard to how the fractal morphology occurs, and how n—o
the magnitude of the fractal dimension is determined. In this
paper we present a simplified, “stripped down” model of This simple aggregation scheme yields self-similar, frac-
diffusion limited cluster aggregatiofDLCA), which explic-  tal clusters, because with each aggregation step extra space
ity shows how the fractal nature occurs and allows for anPeyond the perimeters of the combining aggregates and pro-
exact, analytical calculation of the fractal dimension in anyPortional to the aggregate size is incorporated into the new
spatial dimension. Remarkably, the calculated fractal dimenaggregate. The cluster fractal dimension for this scheme can
sion is in good agreement with both simulations of otherbe calculated using the facts that with each step the cluster
models and experiment. This leads us to ask why our simplg1ass increases by a factor of 2, while both the side and the
model accurately predicts these fractal dimensions; indeed,
we ask what is the source of universality underlying allthe 1 X 1 1 X2 2 X 3 3 X5 S X 8
various models and Nature? The key principle that arises Oé

from our model is that the shape of the aggregates is self-
preserving with aggregation. In our model this shape is de-
scribed byd-dimensional generalizations of the Fibonacci
series, and determines the fractal dimension. We propose 8 X 13
that the agreement in fractal dimension for our model and
other situations is a consequence of shape preservation in all
DLCA processes.

MODEL

Our model is the on-lattice hierarchial modél2] with
the following restrictions(1) Only side-to-end collisions are FIG. 1. A series of two-dimensional clusters created by the re-
allowed, e.g., on a square lattice the clusters can be circunstricted, side-to-end, hierarchical model of DLCA. The dimensions
scribed by a rectangle commensurate with the lattice; thef the circumscribing rectangles are given.
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end of the new cluster are a factor Rf= ¢ larger than for %1% 1
the two combining clusters. Thus XX

D,=log 2/log ¢=1.44. 3

Here the subscript 2 refers to the spatial dimension. This

value is in excellent agreement with numeralis2 DLCA

simulations which find, on averageD,=1.44+0.03

[16,19,2Q. The result is independent of the lattice, e.g., for a 2X3X 4
triangular lattice circumscribing parallelograms vyield the
same results for Eq$2) and (3).

To highlight the specialness of the side-to-end scheme
and the importance of cluster shape consider end-to-end anc
side-to-side aggregations with restrictiof® and(3) above
still enforced. End-to-end aggregation yields a linear aggre-
gate withR— o and a fractal dimensioB,= 1. Side-to-side
aggregation results iR decreasing monotonically, if the
monomers havé&k>2, until R<2. Then, ifa andb are the
end and side of the firdR<2 circumscribing rectangleR
will alternate between £b/a<2 and 2a/b. The geometric
mean ofR is v2, andD,=2. An alternating series of side-
to-side and end-_to—end aggregations creates clusters with t'é‘?ldd=4, f ,=1,1,1,12,3,4,57,10,14,19,26,36,50,... . Each
same aspect ratio as the clustes perhaps monomershat  geries has a limiting value for the ratio of consecutive mem-
were present at the beginning of the series. With a sufficienggg

number of iterationsD,=2 results.

In contrast, the side-to-end scheme is special in that it R P
always yields a nontrivial fractal dimensionsD<d, and a ¢hg= lim f :
nonoscillatingshape invarianceduring aggregation. If the n—= nd
monomers were arbltranly shaped and could be CIrCUMhis is a generalization of the divine proportion. Moreover,
S(.:”bed by rectangles of S'dfaf?d endg, then after theith ;0 self-preserving shape of tlledimensional circumscrib-
binary - side-to-end aggregationR=(bf,.,+af,)/(bf, ing rectangular solids implies that
+af,_1)=¢. This important fact demonstrates that in our
simple aggregation scheme the cluster shape and fractal di- ¢g_¢gfl_1zo_ (6)
mension are independent of the details of the monomers, i.e.,
aggregation erases the microscopic details. Moreover, the |n d dimensions, as fod=2, each aggregation in the
cluster shape is more than invariant; iself-preservingvith  restricted hierarchical model increases the number of mono-
aggregation because aggregates or monomers of arbitragyers per cluster by 2, whereas the edges all increase by a
initial shape combine to form clusters with shapes convergtactor of ¢4. Thus Eq.(3) generalizes to
ing to ¢.

This aggregation scheme can be generalized to higher di- Dy=log 2/log ¢y . (7)
mensions. The key principle is the self-preserving shape.

Figure 2 shows an example of spheres on a cubic lattice iln Table I, we list¢4 values, calculated fractal dimensions,
three dimensions. Id=3, “side” is the longest and “end” and fractal dimensions determined from simulations for
is the shortest of the three edges of the rectangular solids thBrownian, DLCA, aggregation. Agreement is quite good at
circumscribe the growing aggregates. Then the progressicfll spatial dimensions, well within the error of the simula-
of the magnitude of the smallest edg@lee “end”) with each  tions in all instances except one. Furthermore, the calculated
step of the aggregation is 1,1,1,2,3,4,6,9,13,19,28... . This igalue in three dimensions is in excellent agreement with
a series similar to the Fibonacci series. Its rule is to start with

three “ones” and then add next nearest neighbor pairs in the TABLE |. Spatial dimensiord, d-dimensional divine proportion
Senes to create new serles members ¢d , calculated fractal dimensidhd(calc) from Eq(?), to be com-

Reasoning by induction for an arbitrary spatial dimensionpared to fra_ctal dimensions from simulatiqns of I_DLCA aggregation
we define thed-dimensional Fibonacci series by the rules of clus_ters in a boxD(box) [20], and the hierarchical mod&(hi-
start withd “ones,” and (b) for integern=d, erarchica) [19].

FIG. 2. A series of three-dimensional clusters created by the
restricted, side-to-end, hierarchical model of DLCA. The dimen-
sions of the circumscribing rectangular solids are given.

®)

Fro1g=fratfoasig, 4) d bq Dgy(calc) D(box) d(hierarchical
2 1.618 1.44 1.460.04 1.42-0.03
where the first subscript marks timth series member, and 3 1.465 1.81 1.820.10 1.78-0.05
the second subscript labels the dimension. Examples of thig 1.380 2.15 2.160.15 2.04-0.08
generalization arel=1, fn’1=1,2,4,8,16,...,T1, the geo- 5 1.324 2.46 2.350.15 2.306-0.20
metric seriesd=2, f,,=1,1,2,3,5,8,13,21,34,55,..., the Fi- g 1.285 2.76 2.6%0.25

bonacci series;d=3, f,5;=1,1,1,2,3,4,6,9,13,19,28,41,...;
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naturally occurring clusters which have values nBar 1.8
[21]. For higher spatial dimensions, there is a tendency for
the calculated values to be slightly larger than, but within the
error of, the simulation values. It is known, however, tBat
from finite sized simulated clusters is smaller than that ex-
pected for infinitely large clusters. The simulatibnvalues
quoted in Table | are derived froml—o extrapolations, -
which may not be sufficient. e
Two remarks can now be made. First, the necessary ruligs
for the d-dimensional Fibonacci series is only BEd), part ~
(b). Any series ofd numbers will, once partb) is applied,
yield the same asymptotig, . This is, again, a mathematical
demonstration of the convergence to a self-preserving shapi
Second, modification of the side-to-end model to include
an effective overlap between aggregating clusters results ii
clusters of smaller aspect ratio and greater fractal dimensior
This cluster-cluster penetration is thought to describe ballis{@
tic and chemical aggregatiofi22], which are known to have 30
largerD values than Brownian DLCA. I

DISCUSSION 25+

To test the predictions of our model against a realistic
aggregation we have creatddé-2 DLCA aggregates by us-
ing the standard algorithm for DLCA developed by Meakin
[14] which involves random aggregation of a polydisperse &
system of aggregates. In our simulation? b@onomers were < A
placed at random on a 108000 square lattice. The effec- 15
tive diffusion constant of the clusters was inversely propor-
tional to their radius. Thus this simulation closely imitates [
real aggregation. Figure(® shows the cluster radius of gy- 10}
ration Ry versus number of monomers per aggregate. The
linearity of this log-log plot is in accord withlocRgD ,andthe (b N
inverse of the slope vyields the fractal dimension . )

D,=1.46+0.03, typical of many previous results. Figure FIG. 3. (a) Cluster radius of gyration vs |_1um_ber of monomers
3(b) shows the side-to-end ratio as a functionNofSeveral per cluster for a_DLCA aggregatl_on simulation in two dimensions
clusters may have the sami¢ and for these the average ?n a square latticelb) Aspect ratio of the aggregates @I as a h
aspect ratio is plotted. Two features are seen. First a broggnction of the number of Monomers per aggrhegate' Circles arfe th ©
distribution for the aspect ratio is seen with no dependenc;{c/mflatt'Ce length to width ratio; squares are the square root of the
) . h atio of the squares of the on-lattice principle radii of gyration.
on cluster sizé, i.e., the system has a self-preserving shape
during aggregation as we have proposed. Second, the avesut it could well be the self-preserving nature of the aspect
age aspect ratio i6R)=1.51+0.06, which is too low to be ratio with aggregation. This follows from the facts that only
described by the divine proportiory)=1.618. We remark side-to-end aggregations in our model yield nontrivial frac-
that we have also calculated the ratio of the cluster’s printals and a self-preserving shape, and our simulation and
ciple radii of gyration, and found results consistent with pre-those of others show that the shape is invariant with aggre-
vious work[23,24]. gation. Thus one could argue as follows: All DLCA models

The restricted hierarchical model we have presented itave the same fractal dimension, and all models have a self-
unlike a real aggregating system composed of polydisperspreserving shape. One model, the restricted hierarchical
clusters coming together at random. To varying degreemodel, allows for a calculation of the shape and the fractal
similar criticism can be made for the variety of DLCA com- dimension. Other models do not allow for such a calculation,
puter model systems, including aggregation of same sizbut since they have the same common factor the result of a
pairs without restrictions 1-3 abovythe normal hierarchical calculation for the fractal dimension with one model is good
mode), aggregation of random cluster pairs and aggregatioffior all models.
of clusters in a box allowed to randomly aggregate via vari- This rationalization is, admittedly, weak; but the agree-
ous rules of aggregation, all on or off lattice. Despite thesament in Table | is strong; hence we scramble for an expla-
various degrees of reality, all these simulation models anehation. In more detail we speculate that in some manner the
now our analytically solvable model yield essentially theconcept of side-to-end collisions must dominate the mor-
same fractal dimensiofi6,25. This fact begs the question phology of the resulting clusters of any DLCA model. Re-
“what is the common factor among all these situations thasstricting the situation to a lattice, we can argue that an en-
yields the same fractal dimension?” From our simulation itsemble of large aggregates is the result of a random series of
appears that it is not the same aspect ratio for each modednd-to-end, side-to-side, and side-to-end aggregations with
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probabilities binomially distributed aBe=P.~% andP,,  the same unvarying proportions: and this simplest of laws is

=1. The equalityP.= P combined with the shape repli- that which Nature tends to follow. The shell...grows in size,
cation of a consecutive pair of these, implies that side-to-en@ut does not change in shap& This “simplest of laws”
aggregations determine the morphology. This plausibility arapplies to DLCA aggregates and shells alike. What appears
gument is edifying, but does not give an undeniable reasofP be new, however, with the clusters, not found, so far as we
for the success of the model. know, elsewhere in Nature is the generalization of thie 2
We end with a speculative discussion of our fractalmathematics, the Fibonacci series and the divine proportion,
growth model and its possible relation to other nonequilib-to higher dimensions.
rium growth phenomena in Nature. It is well known that
many organisms follow a pattern of growth which has as its CONCLUSIONS
mathematical foundation the Fibonacci series and the divine
proportion [17,26. For example, the pattern of scales on In summary, the restricted, side-to-end hierarchical aggre-
pineapples and pinecones, and the inflorescence of sunflowation model yields clusters with a self-preserving shape de-
ers are intertwining spiral structures, the parastichies, th&cribed byd-dimensional generalizations of the Fibonacci
number of which is a Fibonacci number. The equiang(dar series and the divine proportion. The cluster fractal dimen-
logarithmi@ spiral structure of a sea shell, perhaps the mossions can be calculated from the divine proportions, and the
famous example of which is the shell of the Nautilus, can bdractal nature results from incorporation during aggregation
based on a series of golden polygons such as the golde)f extra volume proportional to the total cluster volume.
rectangle which has the divine proportigg=1.618... as the These fractal dimensions are in good agreement with those
ratio of length to width. found in Nature, and with simulations. The common factor
The results we present here imply a link between shellsthat determines the fractal dimension for all these aggrega-
pineapples, sunflowers, etc., and cluster-cluster aggregatdin schemes is the self-preserving cluster shape. Finally, the
This link is that in all cases growth occurs by addition of simple rule that nonequilibrium growth yields structures of
material without modification of the previous structureain unvarying proportion applies to a great variety of phenomena
manner which creates a new structure identical in shape tdn Nature from sea shells, to flowers, and to DLCA aggre-
the previous onesin his classic treatiseDn Growth and gates as well, and the underlying mathematical description
Form[26] Thompson, who discussed the growth of a varietyfor each is the same.
of shape self-preserving biological structures states that they
grow “by accretion of a_ccgmulgted material” and “the. ACKNOWLEDGMENTS
parts, once formed, remain in being, and are thenceforth in-
capable of change.” This applies to cluster growth as well. We thank A. Chakrabarti for critically reading the manu-
Quoting Thompson again, we may use his words intendedcript. This work was supported by NSF Grant Nos. CTS
for a shell; he writes “...that it shall widen and lengthen in 9408153 and CTS 9709764.
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