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Divine proportion shape preservation and the fractal nature of cluster-cluster aggregates

C. M. Sorensen and C. Oh
Condensed Matter Laboratory, Department of Physics, Cardwell Hall, Manhattan, Kansas 66506-2601

~Received 2 July 1998!

We present a restricted hierarchial model of cluster-cluster aggregation which allows for an analytical
calculation of the fractal dimensions in excellent agreement with those found in Nature and simulations. We
argue that this agreement is a consequence of the self-preserving cluster shape common to all models and
Nature. This shape determines the fractal dimension and in our model is described byd-dimensional gener-
alizations of the Fibonacci series and the divine proportion.@S1063-651X~98!03212-7#

PACS number~s!: 61.43.Hv
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INTRODUCTION

When finely divided solid matter aggregates, it form
ramified clusters of apparently random and ill defined sh
@1–4#. Our ability to describe the morphology of such agg
gates quantitatively improved significantly some two d
cades ago with the introduction by Mandlebrot@5# of the
fractal concept to physics, and the demonstration by For
and Witten@6# that these aggregates have a fractal morph
ogy. Subsequently, there has been a resurgence of intere
the morphology of aggregates, the kinetics of their grow
and the structures that form during nonequilibrium growth
general@7–9#.

Fractals are scale invariant, self-similar objects with
quantifiable, noninteger fractal dimensionD less than the
spatial dimensiond. The common fractal aggregates that o
cur in colloids @10# and aerosols@11–13# are successfully
simulated on a computer using cluster-cluster aggrega
models@14–16#. Despite this, fundamental questions rema
with regard to how the fractal morphology occurs, and h
the magnitude of the fractal dimension is determined. In t
paper we present a simplified, ‘‘stripped down’’ model
diffusion limited cluster aggregation~DLCA!, which explic-
itly shows how the fractal nature occurs and allows for
exact, analytical calculation of the fractal dimension in a
spatial dimension. Remarkably, the calculated fractal dim
sion is in good agreement with both simulations of oth
models and experiment. This leads us to ask why our sim
model accurately predicts these fractal dimensions; inde
we ask what is the source of universality underlying all t
various models and Nature? The key principle that ari
from our model is that the shape of the aggregates is s
preserving with aggregation. In our model this shape is
scribed byd-dimensional generalizations of the Fibonac
series, and determines the fractal dimension. We prop
that the agreement in fractal dimension for our model a
other situations is a consequence of shape preservation
DLCA processes.

MODEL

Our model is the on-lattice hierarchial model@12# with
the following restrictions:~1! Only side-to-end collisions are
allowed, e.g., on a square lattice the clusters can be circ
scribed by a rectangle commensurate with the lattice;
PRE 581063-651X/98/58~6!/7545~4!/$15.00
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longest edge of this rectangle is the side, the shortest is
end.~2! No part of the circumscribing rectangle of a clust
colliding with the side of the circumscribing rectangle of th
second cluster can extend beyond the limits of that side.~3!
The circumscribing rectangles cannot interpenetrate. T
model yields a monodisperse system of clusters.

We apply this restricted, side-to-end, hierarchical agg
gation scheme to the case of circular monomers on a t
dimensional, square lattice in Fig. 1. The dimensions of
circumscribing rectangles progress with aggregation in
cord with the Fibonacci series

f n51,1,2,3,5,8,13,21,34,55,... . ~1!

The side-to-end aspect ratioR of the aggregates is equal t
f n11 / f n . In the limit n→`, this yields the divine proportion
~or golden section! f @17,18#

R5 lim
n→`

f n11 / f n5f51.618 03... . ~2!

This simple aggregation scheme yields self-similar, fra
tal clusters, because with each aggregation step extra s
beyond the perimeters of the combining aggregates and
portional to the aggregate size is incorporated into the n
aggregate. The cluster fractal dimension for this scheme
be calculated using the facts that with each step the clu
mass increases by a factor of 2, while both the side and

FIG. 1. A series of two-dimensional clusters created by the
stricted, side-to-end, hierarchical model of DLCA. The dimensio
of the circumscribing rectangles are given.
7545 © 1998 The American Physical Society
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7546 PRE 58C. M. SORENSEN AND C. OH
end of the new cluster are a factor ofR5f larger than for
the two combining clusters. Thus

D25 log 2/log f51.44. ~3!

Here the subscript 2 refers to the spatial dimension. T
value is in excellent agreement with numerousd52 DLCA
simulations which find, on average,D251.4460.03
@16,19,20#. The result is independent of the lattice, e.g., fo
triangular lattice circumscribing parallelograms yield t
same results for Eqs.~2! and ~3!.

To highlight the specialness of the side-to-end sche
and the importance of cluster shape consider end-to-end
side-to-side aggregations with restrictions~2! and ~3! above
still enforced. End-to-end aggregation yields a linear agg
gate withR→` and a fractal dimensionD251. Side-to-side
aggregation results inR decreasing monotonically, if the
monomers haveR.2, until R,2. Then, if a and b are the
end and side of the firstR,2 circumscribing rectangle,R
will alternate between 1<b/a,2 and 2a/b. The geometric
mean ofR is &, andD252. An alternating series of side
to-side and end-to-end aggregations creates clusters with
same aspect ratio as the clusters~or perhaps monomers! that
were present at the beginning of the series. With a suffic
number of iterations,D252 results.

In contrast, the side-to-end scheme is special in tha
always yields a nontrivial fractal dimension, 1,D,d, and a
nonoscillatingshape invarianceduring aggregation. If the
monomers were arbitrarily shaped and could be circu
scribed by rectangles of sideb and enda, then after thenth
binary side-to-end aggregation,R5(b fn111a fn)/(b fn
1a fn21)5f. This important fact demonstrates that in o
simple aggregation scheme the cluster shape and fracta
mension are independent of the details of the monomers,
aggregation erases the microscopic details. Moreover,
cluster shape is more than invariant; it isself-preservingwith
aggregation because aggregates or monomers of arbi
initial shape combine to form clusters with shapes conve
ing to f.

This aggregation scheme can be generalized to highe
mensions. The key principle is the self-preserving sha
Figure 2 shows an example of spheres on a cubic lattic
three dimensions. Ind53, ‘‘side’’ is the longest and ‘‘end’’
is the shortest of the three edges of the rectangular solids
circumscribe the growing aggregates. Then the progres
of the magnitude of the smallest edge~the ‘‘end’’! with each
step of the aggregation is 1,1,1,2,3,4,6,9,13,19,28... . Th
a series similar to the Fibonacci series. Its rule is to start w
three ‘‘ones’’ and then add next nearest neighbor pairs in
series to create new series members.

Reasoning by induction for an arbitrary spatial dimens
we define thed-dimensional Fibonacci series by the rules~a!
start withd ‘‘ones,’’ and ~b! for integern>d,

f n11,d5 f n,d1 f n2d11,d , ~4!

where the first subscript marks thenth series member, an
the second subscript labels the dimension. Examples of
generalization ared51, f n,151,2,4,8,16,...,2n21, the geo-
metric series;d52, f n,251,1,2,3,5,8,13,21,34,55,..., the F
bonacci series;d53, f n,351,1,1,2,3,4,6,9,13,19,28,41,..
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and d54, f n,451,1,1,1,2,3,4,5,7,10,14,19,26,36,50,... . Ea
series has a limiting value for the ratio of consecutive me
bers

fd5 lim
n→`

f n11,d

f n,d
. ~5!

This is a generalization of the divine proportion. Moreov
the self-preserving shape of thed-dimensional circumscrib-
ing rectangular solids implies that

fd
d2fd

d212150. ~6!

In d dimensions, as ford52, each aggregation in th
restricted hierarchical model increases the number of mo
mers per cluster by 2, whereas the edges all increase
factor of fd . Thus Eq.~3! generalizes to

Dd5 log 2/log fd . ~7!

In Table I, we listfd values, calculated fractal dimension
and fractal dimensions determined from simulations
Brownian, DLCA, aggregation. Agreement is quite good
all spatial dimensions, well within the error of the simul
tions in all instances except one. Furthermore, the calcula
value in three dimensions is in excellent agreement w

FIG. 2. A series of three-dimensional clusters created by
restricted, side-to-end, hierarchical model of DLCA. The dime
sions of the circumscribing rectangular solids are given.

TABLE I. Spatial dimensiond, d-dimensional divine proportion
fd , calculated fractal dimensionDd(calc) from Eq.~7!, to be com-
pared to fractal dimensions from simulations of DLCA aggregat
of clusters in a boxD~box! @20#, and the hierarchical modelD~hi-
erarchical! @19#.

d fd Dd(calc) D~box! d~hierarchical!

2 1.618 1.44 1.4660.04 1.4260.03
3 1.465 1.81 1.8260.10 1.7860.05
4 1.380 2.15 2.1060.15 2.0460.08
5 1.324 2.46 2.3560.15 2.3060.20
6 1.285 2.76 2.6560.25 ¯
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naturally occurring clusters which have values nearD51.8
@21#. For higher spatial dimensions, there is a tendency
the calculated values to be slightly larger than, but within
error of, the simulation values. It is known, however, thatD
from finite sized simulated clusters is smaller than that
pected for infinitely large clusters. The simulationD values
quoted in Table I are derived fromN→` extrapolations,
which may not be sufficient.

Two remarks can now be made. First, the necessary
for the d-dimensional Fibonacci series is only Eq.~4!, part
~b!. Any series ofd numbers will, once part~b! is applied,
yield the same asymptoticfd . This is, again, a mathematica
demonstration of the convergence to a self-preserving sh

Second, modification of the side-to-end model to inclu
an effective overlap between aggregating clusters result
clusters of smaller aspect ratio and greater fractal dimens
This cluster-cluster penetration is thought to describe ba
tic and chemical aggregations@22#, which are known to have
largerD values than Brownian DLCA.

DISCUSSION

To test the predictions of our model against a realis
aggregation we have createdd52 DLCA aggregates by us
ing the standard algorithm for DLCA developed by Meak
@14# which involves random aggregation of a polydispe
system of aggregates. In our simulation, 104 monomers were
placed at random on a 100031000 square lattice. The effec
tive diffusion constant of the clusters was inversely prop
tional to their radius. Thus this simulation closely imitat
real aggregation. Figure 3~a! shows the cluster radius of gy
ration Rg versus number of monomers per aggregate. T
linearity of this log-log plot is in accord withN}Rg

D , and the
inverse of the slope yields the fractal dimensi
D251.4660.03, typical of many previous results. Figu
3~b! shows the side-to-end ratio as a function ofN. Several
clusters may have the sameN, and for these the averag
aspect ratio is plotted. Two features are seen. First a b
distribution for the aspect ratio is seen with no depende
on cluster sizeN, i.e., the system has a self-preserving sha
during aggregation as we have proposed. Second, the a
age aspect ratio iŝR&51.5160.06, which is too low to be
described by the divine proportion,f51.618. We remark
that we have also calculated the ratio of the cluster’s p
ciple radii of gyration, and found results consistent with p
vious work @23,24#.

The restricted hierarchical model we have presented
unlike a real aggregating system composed of polydisp
clusters coming together at random. To varying degr
similar criticism can be made for the variety of DLCA com
puter model systems, including aggregation of same
pairs without restrictions 1–3 above~the normal hierarchica
model!, aggregation of random cluster pairs and aggrega
of clusters in a box allowed to randomly aggregate via va
ous rules of aggregation, all on or off lattice. Despite the
various degrees of reality, all these simulation models
now our analytically solvable model yield essentially t
same fractal dimension@16,25#. This fact begs the questio
‘‘what is the common factor among all these situations t
yields the same fractal dimension?’’ From our simulation
appears that it is not the same aspect ratio for each mo
r
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but it could well be the self-preserving nature of the asp
ratio with aggregation. This follows from the facts that on
side-to-end aggregations in our model yield nontrivial fra
tals and a self-preserving shape, and our simulation
those of others show that the shape is invariant with agg
gation. Thus one could argue as follows: All DLCA mode
have the same fractal dimension, and all models have a
preserving shape. One model, the restricted hierarch
model, allows for a calculation of the shape and the frac
dimension. Other models do not allow for such a calculati
but since they have the same common factor the result
calculation for the fractal dimension with one model is go
for all models.

This rationalization is, admittedly, weak; but the agre
ment in Table I is strong; hence we scramble for an exp
nation. In more detail we speculate that in some manner
concept of side-to-end collisions must dominate the m
phology of the resulting clusters of any DLCA model. R
stricting the situation to a lattice, we can argue that an
semble of large aggregates is the result of a random serie
end-to-end, side-to-side, and side-to-end aggregations

FIG. 3. ~a! Cluster radius of gyration vs number of monome
per cluster for a DLCA aggregation simulation in two dimensio
on a square lattice.~b! Aspect ratio of the aggregates in~a! as a
function of the number of monomers per aggregate. Circles are
on-lattice length to width ratio; squares are the square root of
ratio of the squares of the on-lattice principle radii of gyration.
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probabilities binomially distributed asPee5Pss5
1
4 and Pse

5 1
2 . The equalityPee5Pss combined with the shape repl

cation of a consecutive pair of these, implies that side-to-
aggregations determine the morphology. This plausibility
gument is edifying, but does not give an undeniable rea
for the success of the model.

We end with a speculative discussion of our frac
growth model and its possible relation to other nonequi
rium growth phenomena in Nature. It is well known th
many organisms follow a pattern of growth which has as
mathematical foundation the Fibonacci series and the div
proportion @17,26#. For example, the pattern of scales
pineapples and pinecones, and the inflorescence of sunfl
ers are intertwining spiral structures, the parastichies,
number of which is a Fibonacci number. The equiangular~or
logarithmic! spiral structure of a sea shell, perhaps the m
famous example of which is the shell of the Nautilus, can
based on a series of golden polygons such as the go
rectangle which has the divine proportionf251.618... as the
ratio of length to width.

The results we present here imply a link between she
pineapples, sunflowers, etc., and cluster-cluster aggreg
This link is that in all cases growth occurs by addition
material without modification of the previous structure ina
manner which creates a new structure identical in shape
the previous ones. In his classic treatise,On Growth and
Form @26# Thompson, who discussed the growth of a varie
of shape self-preserving biological structures states that
grow ‘‘by accretion of accumulated material’’ and ‘‘th
parts, once formed, remain in being, and are thenceforth
capable of change.’’ This applies to cluster growth as w
Quoting Thompson again, we may use his words inten
for a shell; he writes ‘‘...that it shall widen and lengthen
n
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the same unvarying proportions: and this simplest of law
that which Nature tends to follow. The shell...grows in siz
but does not change in shape...’’ This ‘‘simplest of laws’’
applies to DLCA aggregates and shells alike. What appe
to be new, however, with the clusters, not found, so far as
know, elsewhere in Nature is the generalization of thed
mathematics, the Fibonacci series and the divine proport
to higher dimensions.

CONCLUSIONS

In summary, the restricted, side-to-end hierarchical agg
gation model yields clusters with a self-preserving shape
scribed byd-dimensional generalizations of the Fibonac
series and the divine proportion. The cluster fractal dim
sions can be calculated from the divine proportions, and
fractal nature results from incorporation during aggregat
of extra volume proportional to the total cluster volum
These fractal dimensions are in good agreement with th
found in Nature, and with simulations. The common fac
that determines the fractal dimension for all these aggre
tion schemes is the self-preserving cluster shape. Finally,
simple rule that nonequilibrium growth yields structures
unvarying proportion applies to a great variety of phenome
in Nature from sea shells, to flowers, and to DLCA agg
gates as well, and the underlying mathematical descrip
for each is the same.

ACKNOWLEDGMENTS

We thank A. Chakrabarti for critically reading the man
script. This work was supported by NSF Grant Nos. C
9408153 and CTS 9709764.
-

i-
@1# M. J. Vold, J. Colloid Sci.18, 684 ~1963!.
@2# D. N. Sutherland, J. Colloid Interface Sci.22, 300 ~1966!; 25,

373 ~1967!; Nature~London! 226, 1241~1970!.
@3# A. I. Medalia, J. Colloid Interface Sci.24, 393 ~1967!.
@4# A. I. Medalia and F. A. Heckman, Carbon7, 567 ~1969!.
@5# B. B. Mandelbrot,Fractals: Form, Chance, and Dimensio

~Freeman, San Francisco, 1977!.
@6# S. R. Forrest and T. A. Witten, Jr., J. Phys. A12, L109 ~1979!.
@7# Kinetics of Aggregation and Gelation, edited by F. Family and

D. P. Landau~North-Holland, Amsterdam, 1984!.
@8# On Growth and Form: Fractal and Non-Fractal Patterns i

Physics, edited by H. E. Stanley and N. Ostrowski~Nijhof,
Dordrecht, 1986!.

@9# Random Fluctuations and Pattern Growth: Experiments a
Models, edited by H. E. Stanley and N. Ostrowski~Kluwer,
Dordrecht, 1988!.

@10# D. A. Weitz and M. Oliveria, Phys. Rev. Lett.52, 1433~1984!.
@11# R. J. Samson, G. W. Mulholland, and J. W. Gentry, Langm

3, 273 ~1987!.
@12# R. A. Dobbins and C. M. Megaridis, Langmuir3, 254 ~1987!.
@13# H. X. Zhang, C. M. Sorensen, E. R. Ramer, B. J. Olivier, a

J. F. Merklin, Langmuir4, 867 ~1988!.
d

r

@14# P. Meakin, Phys. Rev. Lett.51, 1119~1983!.
@15# M. Kolb, R. Botet, and R. Jullien, Phys. Rev. Lett.51, 1123

~1983!.
@16# P. Meakin, inRandom Fluctuations and Pattern Growth: Ex

periments and Models~Ref. @9#!, p. 174.
@17# H. E. Huntley,The Divine Proportion. A Study in Mathemat

cal Beauty~Dover, New York, 1970!.
@18# H. S. M. Coxeter,Introduction to Geometry~Wiley, New

York, 1969!.
@19# R. Jullien, M. Kolb, and R. Botet, J. Phys.~France! Lett. 45,

L211 ~1984!.
@20# P. Meakin, Phys. Lett.107A, 269 ~1985!.
@21# C. M. Sorensen and G. D. Feke, Aerosol. Sci. Technol.25, 328

~1996!.
@22# R. Thouy and R. Jullien, J. Phys. A27, 2953~1994!.
@23# F. Family, T. Vicsek, and P. Meakin, Phys. Rev. Lett.55, 641

~1985!.
@24# R. Botet and R. Jullien, J. Phys. A19, L907 ~1986!.
@25# R. Botet, R. Jullien, and M. Kolb, J. Phys. A17, L75 ~1984!.
@26# D. W. Thompson,On Growth and Form~MacMillan, Cam-

bridge, 1942!.


